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The binding energy of a A particle in nuclear matter, B\( <*>), is calculated using a A-nucleon two-body po­
tential with a hard core, which reproduces the binding energies of light hypernuclei and the A-nucleon scat­
tering at intermediate energies. The simplified version of the Brueckner theory used in previous calculations 
is applied. The effective mass of the A particle, MA*, is estimated to be about 0.9 M&. The rearrange­
ment energy is included in the calculation. The result obtained, B^{ <*>) ~31 MeV, is in good agreement with 
the measured value. 

I. INTRODUCTION 

SINCE the first observation of a hyperfragment by 
Danysz and Pniewski,1 there have been many 

attempts to determine the parameters of the A-nucleon 
interaction from the measured binding energies of 
hyperfragments. Inmost of these attempts the A-nucleon 
interaction represented by an effective two-body central 
potential has been used in variational calculations of the 
binding energies of light hypernuclei. These energies, 
however, are determined primarily by the S-wave inter­
action. Hence, these calculations led to specification of 
the A-nucleon potential in 5 state only (see, for example, 
the report by Dalitz2). 

Information about the A-nucleon interaction in higher 
angular momentum states can be obtained by analyzing 
the binding energies of heavy hypernuclei which do 
depend on the interaction in these states. 

Instead of calculating the binding energy of a A 
particle in a heavy but finite nucleus, it is easier to 
calculate the binding energy in an infinite nuclear 
medium, i.e., in nuclear matter. To determine empiri­
cally the binding energy of a A particle in nuclear 
matter, one can procede in one of the following two 
ways: 

(i) One represents the AZA hypernucleus (̂ 4 = total 
mass number which includes the one A particle) by a 
single-particle potential u(r) in which the A particle 
moves. This potential contains two parameters: the 
radius R=ro(A —1)1/3 (fo is known, e.g., from electron 
scattering experiments) and the depth U (U<0). For a 
given analytical form of u, one solves the Schrodinger 
equation for the A particle moving in the potential u(r) 
and determines the lowest energy eigenvalue EQ 
= EQ(A,U). By comparing Eo(A,U) with the measured 
binding energies, BA(A), for different hypernuclei \ZA, 
one can determine the value of U which gives the best 
over-all agreement between Eo (A, U) and — BA (A). 
Obviously, we have 

U=]imA^aoEo(AiU) = - l i n u - ^ A ^ ) . (1) 

* On leave of absence from the Institute for Nuclear Research 
and the Warsaw University, Warsaw, Poland. 

1 M. Danysz and J. Pniewski, Phil. Mag. 44, 348 (1953). 
2 R. H. Dalitz, in Proceedings of the Rutherford Jubilee Inter­

national Conference, Manchester, 1961, edited by J. B. Birks 
(Heywood and Company, Ltd., London, 1961), p. 103. 
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Hence, — U is equal to BA(oc), the binding energy of a 
A particle in nuclear matter.3,4 

(ii) One can simply extrapolate the measured values 
of BK(A) for A-*oo .5 

Both of the methods give the result6 

5 A («>)=30MeV. (2) 

Several calculations of J5A(°°) have been pub­
lished.3 '7~10 We shall concentrate our attention on I 
and I I which seem to be the most reliable calculations.11 

The A-nucleon potential considered in I and I I is as­
sumed to have a hard core. Hence, one applies the 
Brueckner theory in calculating V. In I and II , the 
simplest version of the Brueckner theory has been ap­
plied, namely that of Gomes, Walecka, and Weisskopf12 

This seems to be well justified because up to now we 
know very little about the details of A-nucleon inter­
action and it would be premature to get involved in any 
more extensive computations. Furthermore, in a calcula­
tion of the binding energy of a pure nuclear matter, one 
needs a high degree of accuracy because the potential 
part of the energy is nearly cancelled by the kinetic 
part . However, in the case of the single-particle energy 
of a A particle in its lowest state in nuclear matter, the 
kinetic energy of the A particle is zero. Therefore, a less 
accurate calculation of the potential part seems to be 
justified. 

The results of I and I I are as follows: If one fixes the 
parameters of the A-nucleon potential in the S state to 
get the proper binding of the light hypernuclei, and 
assumes that the same potential acts in higher angular 

3 J. D. Walecka, Nuovo Cimento 16, 342 (1960). 
4 J. W. Olley, Australian J. Phys. 14, 313 (1961). 
5 D. H. Davis, R. Levi Setti, M. Raymund, T. Skjeggestad, 

G. Tomasini et ah, Phys. Rev. Letters 9, 464 (1962). 
6 A full discussion of the empirical estimates of -SA(°°) is given 

in Refs. 9 and 10. 
7 M. Taherzadeh, S. A. Moszkowski, and P. C. Sood, Nuovo 

Cimento 23, 168 (1962). 
8 A. R. Bodmer and S. Sampanthar, Nucl. Phys. 31, 251 (1962). 
9 B. W. Downs and W. E. Ware, Phys. Rev. 133, B134 (1964); 

hereafter referred to as I. 
10 B. Ram and B. W. Downs, Phys. Rev. 133, B420 (1964); 

hereafter referred to as II. 
11 We shall not discuss here the perturbation treatment of Ref. 8 

which cannot be applied in the case of realistic A-nucleon inter­
action containing a hard core. 

12 L. C. Gomes, J. D. Walecka, and V. F. Weisskopf, Ann. Phys. 
(N. Y.) 3, 241 (1958). 
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momentum states one gets J5A( °° ) ~ 4 0 MeV. This result 
is too big compared to the experimental value (around 
30 MeV). As a possible explanation of this discrepancy, 
a suppression of the interaction in higher I states has 
been suggested in an early paper by Walecka.3 

Obviously, the best direct source of information about 
the A-nucleon interaction would be A-nucleon scattering. 
The few available experimental data on A-nucleon scat­
tering cross section have been analyzed in I I with the 
help of a A-nucleon potential with a flexible suppression 
of the interaction in higher I states. The results show 
that one gets clearly the best agreement with the ex­
perimental scattering data in the case of no suppression 
of the A-nucleon interaction in higher / states. The 
problem then arises of how to explain the discrepancy 
between the calculated and measured value of J3A(°° ) . 
As a possible explanation, the role of many-body forces 
is mentioned in II . 

However, even in the simplified version of the 
Brueckner theory applied in I and II , there are two 
effects which should be considered: (1) the fact that the 
effective mass .MA* of the A particle is smaller than its 
real mass MA ; (2) the rearrangement effects. 

In all the previous calculations the assumption 
M A * = M A has been made. Two reasons for this as­
sumption have been given3: First, there are no exchange 
integrals arising from the Pauli principle and, second, 
the A-nucleon interaction assumed does not contain 
space exchange force. However, one of the causes for 
M A * being smaller than MA is the repulsive core in the 
A-nucleon interaction. A simple estimate of the reduc­
tion of M A * caused by the repulsive core leads to a 
reduced value of -£>A(°°). 

Most important, however, is the rearrangement effect. 
In all the previous calculations, the single-particle model 
potential V has been identified with — £ A ( ° ° ) . The 
single-particle model potential V is introduced in the 
Brueckner theory for the sole purpose of calculating the 
total energy of the system (to cancel higher order 
graphs) and is not equal to the potential part of the 
separation energy.13 Let us consider the case of a particle 
at the bottom of the Fermi sea which then does not have 
any kinetic energy. To separate this particle from the 
system we first have to perform the work equal to — V. 
However, the system left with the hole at the bottom 
of the Fermi sea has now the possibility to rearrange 
itself to an energetically more favorable state, and while 
doing it releases the rearrangement energy VR. Hence, 
the separation (or binding) energy B= — (V+VR) 
= -U<-'V. 

The problem of the rearrangement energy has been 
recognized for a long time in the theory of nuclear 
matter.13 In particular, Brueckner and his collabo-

13 K. A. Brueckner, Phys. Rev. 110, 597 (1958); N. M. Hugen-
holtz and L. Van Hove, Physica 24, 363 (1958). 

rators14'15 have calculated VR splitting it into two parts. 
One is the exclusion contribution, VR (exclusion), con­
nected with the change in the operation of the Pauli 
principle when a hole is created by removing a nucleon. 
This part is absent in the case of a A particle in nuclear 
matter as A is not an identical particle with nucleons. 
The other part, the effective-mass contribution VR(M*), 
is connected with the change in the single-particle model 
energies (or equivalently, in the effective mass M*) 
caused by the removal of one particle from the system. 
In the case of a nucleon in nuclear matter removed from 
the bottom of the Fermi sea, the calculation of Ref. 15 
gave VR(M*)^10 MeV. An effect of the same order of 
magnitude should be expected also in the case of a 
A particle. 

In the present paper we calculate the binding energy 
of a A particle in nuclear matter. We apply the ap­
proximate procedure of I and I I but include the change 
in the effective mass of the A particle M A * and the 
rearrangement effect. We find that these two effects 
reduce the calculated value of £ A ( ° ° ) to a value which 
lies within the range of the experimental estimates. 

I t should be noticed that from the point of view of the 
many-body theory, the case of a A particle in nuclear 
matter presents an interesting case in which only one 
part of the rearrangement energy, namely VR(M*), 
appears. Also, the simple method of calculating VR(M*) 
presented in this paper is not quite standard. I t has been 
first applied in Ref. 16 in connection with the theory of a 
finite nucleus. 

All the calculations of the present paper assume the 
following value for the density of nuclear matter : 

p - ^ / 0 F - 0 . 1 7 2 n u c l e o n s / F 3 . (3) 

The corresponding values of the Fermi momentum 
hkF and the parameter r<j, connected with p by the 
equation 

P=(f7rfo3)-1 = 2^F
3/3x2 (4) 

are 
ftF= 1.366 F" 1 , r 0 = 1.113 F . (5) 

In all our calculations, we assume the A-nucleon 
potential VAN to be spin-independent and to be the same 
in all angular momentum states. 

VAN (r) = VAC (r)+VAA (r) , (6) 
where 

f oo for r<c, 
VAc(r)=\ (6a) 

10 for r>c, 

fO for r<c, 
vAA(r) = l-Uo for c<r<c+b, (6b) 

l-W expl-2(r-c)/R] for r>c+b, 

14 K. A. Brueckner and D. T. Goldman, Phys. Rev. 117, 207 
(1960). 

15 K. A. Brueckner, J. L. Gammel, and J. T. Kubis, Phys. Rev. 
118, 1438 (1960). 

16 H. S. Kohler, Nucl. Phys. 38, 661 (1962). 
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with 

r0.T 

1.1 

.1.5. 

- F , Z70=-

-5I.3-

27.6 

.16.1. 

»MeV. 

(8a) 

(8b) 

(8c) 

c = 0 . 4 F , £=0 .847 F , 17=150 MeV. (7) 

The following values of b and Uo are considered: 

b = 

The potential given by Eqs. (6)- (8) has been con­
sidered in I I . I t gives a reasonable agreement with the 
few measured A-nucleon scattering cross sections and its 
S-wave part reproduces the binding energies of the light 
hyperfragments. Actually, the values of Uo, Eq. (4), are 
the spin-averaged values. Instead of considering differ­
ent values of Uo in the singlet and triplet state of the 
A-nucleon system, it is simpler to deal with a spin-
independent potential with a properly averaged value 
of Uo. The result is the same since in our calculations we 
shall restrict ourselves to terms linear in the attractive 
part of VAN. 

As in I and I I , we shall use the following simplified 
form of the nucleon-nucleon interaction used in Ref. 12: 

VNN = vN(r) ( l + P r ) / 2 , 

where Pr is the space exchange operator, and 

vN (r) = vNC (r)+vNA (r), 

and where 
fco for r<cN, 

10 for T>CN 

vNA(r) = < 

'0 for r<cx, 

— VN for CN<r<bN+cN, 

.0 for bN+cx<r, 

(9) 

(10a) 

(10b) 

(10c) 

with 
VN=kW/4MNbif

i, 

bN=1.9F, cx=c=0AF. (11) 

The nucleon-nucleon interaction, Eqs. (9)—(11), en­
ters into our calculations in two ways. Firstly, the 
effective nucleon mass i f #* is determined by V^N. Its 
value at the density given by Eq. (3) has been calcu­
lated in I to be 

MN* = 0.735MN. (12) 

Secondly, v^w enters explicitly into the expression of 
the rearrangement energy. 

II. GENERAL EXPRESSION FOR THE BINDING 
ENERGY OF A A PARTICLE IN 

NUCLEAR MATTER 

We shall consider a nuclear matter with equal number 
of protons and neutrons (Z=N = A/2). We also assume 
that the number of protons (neutrons) with spin up is 

the same as the number of protons (neutrons) with spin 
down. 

By E(A) we denote the ground-state energy of 
nuclear matter, and by E(A + 1A), the ground-state 
energy of the system: nuclear matter + A particle. 

The binding energy of the A particle JBA(°O) is given 
by 

-BA(*) = U=E(A + 1A)-E(A). (13) 

Both the energies E(A + 1A) and E(A) consist of a 
potential and a kinetic part. In the ground state of the 
nuclear matter +A-particle system, the A particle 
occupies the state with zero momentum. Hence, we have 

U=EJ>OT(A + U)-EJ>0T(A). (14) 

According to the Brueckner theory, we have 

£ p o T ( ^ ) = E m i E m , E * E r ( 2 S + l ) ( 2 r + l ) 

X ( m i m 2 | i r ( ^ ) | m i m 2 ) , (15) 

where K(A) is the reaction matrix for nucleon-nucleon 
interaction in nuclear matter, S is the total spin, and T 
the total isospin of the two interacting nucleons. The 
momenta of the two nucleons are M i and &m2. The 
usual factor \ is cancelled in Eq. (15) by the factor 2 
introduced by the exchange term. 

For our simplified nucleon-nucleon potential, Eq. (9), 
K(A) is spin-independent. Furthermore, since the po­
tential acts only in even / states, the total isotopic spin 
T is determined by S ( r = 0 for 5 = 1 , and T = l for 
S=0). Hence, we have 

£POT(^4) = 6 Emi Zm 2 (mim 2 | i£(^) |mim2). (16) 

<kF <kF 

Similarly, we have 

£ P O T G 4 + 1A) = 6 Emi Em2(mim 2 | i r (^ + lA)|mim2) 

+ 4 Emi(mimA|3C|miiiiA), (17) 
<kF 

where K(A + 1A) is the reaction matrix for nucleon-
nucleon interaction in the nuclear matter +A-particle 
system, and where X is the reaction matrix for A-
nucleon interaction which is assumed to have the simple 
form (6). The wave vector of the A particle is denoted by 
niA (in our case niA=0). 

Inserting Eqs. (16) and (17) into Eq. (14) we get 

U=V+V9, (18) 

where the single-particle model potential V is given by 

V=± £mi(minu|3e |mimA), (19) 
<kF 

and the rearrangement potential VR is 

F * = 6 E mi 2^m2 

(mmi\K(A + l/,)-K(A)\m1mi). (20) 
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A. Expression for V 

Let us now describe briefly the approximate calcula­
tion of V presented in I. First, one goes over to the 
relative coordinates since the X matrix depends weakly 
on the center-of-mass momentum of the nucleon, and 
the A particle one uses the value of the 3C matrix for zero 
center-of-mass momentum. 

By introducing the wave function for the relative 
motion of the nucleon and the A particle M/*k (k is the 
relative momentum), one obtains for V 

V= [4/(27r)3](MiNrVM*)3 / dk dt e x p ( - i k r ) 

X[»Ac(f)+»iLi(f)>k(r), (21) 

where the reduced effective mass jit* is given by 

1//** = 1/Af j^*+ 1/Af A* , (22) 

and where MJV*, M A * are the effective masses of the 
nucleon and the A particle, respectively. 

The main approximation consists in replacing ^k(r) 
in Eq. (21) by the wave function for a pure hard-core 
interaction. Its 5-wave part is the known solution of the 
Bethe-Goldstone17 equation: 

[¥k(r)]f l^BG(*,#0 

= ZA(k)/kr]\siiik(r-c) 

fr)( f dr'! + (1/TT)( / dr'sink(r-r') 

r sink F(rf+c) sink F(r'—c)~ 

x (r'+c) (r'-c) 
(23) 

where 

\/A(k) = coskc+(\/T){sinkc(Ci[c(kF+k)~] 

— Ci[c{kF—k)"]) — coskc(Si[c(kF~\-k)'] 

+silc(kF-k)j)}i 

where Si and Ci are defined as in Jahnke-Emde.18 

The S-wave part contribution to V can be easily 
calculated. In evaluating the hard-core part, one uses the 
relation 

rvAC(r)VBG(k,r)^(h*/2vi*)A (k)d(r-c). (25) 

An approximate calculation of the higher / contribu­
tions to V is discussed in detail in I. 

B. Expression for VR 

From the equations for K(A) and K(A + 1A), one 
17 H. A. Bethe and J. Goldstone, Proc. Roy. Soc. (London) 

A238, 551 (1957). 
18 E. Jahnke and F. Emde, Tables of Functions with Formulas 

and Curves (Dover Publications, New York, 1945), 4th ed. 

obtains after some algebra, 

(mim2|J5:(i4 + lA)-JS:(i4)|mim2) 

= Ek i Ek2(mim 2 | i r (^ ) |k ik 2 ) 
>kF >kF 

x < > ' 
ka | tf(i4 + lA)|mim2), (26) 

with 

^(^/e) = ZeA(m1)+eA(m2)-eA(k1)-eA(k2)'}~1 

— [e (nti)+e (m2) — e(k1) — e(k2) J"1 

^-Le(m1)+e(m2)-e(k1)--e(k2)lr
2 

X{[eA(wi) -e (wi ) ]+[e A (w 2 ) -e (w2) ] 

- C « A ( * 0 - ^ ( * I ) D - C « A ( * 2 > - « ( * 0 D > , (27) 

where e(k) and e^(k) are the single-particle model 
energies of a nucleon with momentum fik in nuclear 
matter and in the nuclear matter +A-particle system, 
respectively. 

Now we introduce the following approximations dis­
cussed in detail by Brueckner et al.u,u First, we apply 
the first iteration to Eq. (26), i.e., replace K(A +1A) by 
K(A) on the right-hand side of this equation. Second, 
we approximate the differences in the single-particle 
energies by 

eA(nti)-e(m^(m4mA| X\ mimA), (28) 

«A(**)-«(*<)=Ck«mA|3Ci|*iniA), (29) 

where i=l, 2. The contribution of the A-nucleon inter­
action to the single-particle energy of a nucleon below 
the Fermi surface, Eq. (28), is determined by the on-
energy-shell X matrix. However, for nucleon in excited 
states (ki>kp), one has to use the off-energy-shell 
reaction matrix denoted in Eq. (29) by 3Ci. This well-
known point of the Brueckner theory is discussed, e.g., 
in Refs. 14 and 19. 

The two approximations inserted into Eq. (26) allow 
us to write VR, Eq. (20), in the form 

(24) where 
VR^VRh+VRP) (30) 

F i 2 ^ = - 1 2 ^ m i Em2 E k ! Zk 2 {(mim 2 | i r |k ik 2 ) 

X (kik21K | m1m2)/le(m1)+e(m2) 

-•e(*i)--«(*»)]2}(mimA|3C|miiiiA), (31) 

L k i Lk2{ (m!m21K | kik2) 
X (kik21K | m1m2)/[e (mi)+e (m2) 

- c ^ O - ^ ^ X k i m A l J C i l k i m A ) , (32) 

where nti<kF, m2<kF, ki>kF, k2>kF, and where K 
stands for K(A) (we shall use this simplified notation 
throughout the following considerations). 

These are the hole (VRK) and particle (VRP) rear­
rangement energies of third order. In the case of a pure 

19 H. A. Bethe, B. H. Brandow, and A. G. Petschek, Phys. Rev. 
129, 225 (1963). 
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E ki E k21 ( k i t | &i\r -11 mim2) | 

FIG. 1. Rearrange­
ment energy dia­
grams. 

dx\xm
N(t)\K (41) 

The integral in Eq. (41) represents the correlation 
volume of the two interacting nucleons, and it is slowly-

nuclear matter, they have been considered by Brueckner varying with the relative momentum m. For example, if 
et a/.14'16 who called them the effective mass rearrange- one approximates ^m

N by the solution of the Bethe-
ment terms. In the case of a finite nucleus they were Goldstone equation for the S wave [i.e., one neglects the 
discussed in Ref. 16 (where VRK was denoted by Vst and attractive part of vNN in Eq. (10) and the interaction in 
VRP by Vp). The corresponding diagrams are shown D state] one finds22 

in Fig. 1. 
III. CALCULATION OF VRl 

Let us first write the equation for the nucleon-
nucleon reaction matrix K with the help of the wave 
operator QN (K=vNNtiN) (Ref. 20): 

(kik21 ftiv | mim2) = (kik21 mim2)+ (kik21K | mim2)/ 
le(m1)+e(m2)-~e(k1) — e(k2)2' (33) 

This equation enables us to write Eq. (31) for Van in 
the form 

/ 
dx\x*\^ 

fl.l 

1.2 

U.4J 

IF3 for 
m 

kF 

0 

J-0.5. 

0.7 

(42) 

Hence, we shall make the following approximation: 

dr\xm
N\^[dr\xN\* 

V;Rh= —12 Em! Em2 Ekx Ek21 (kik2\QN— 11mim2).|
2 

X (mimA 13C | mimA). (34) 

In the relative and center-of-mass coordinates 

K=k x+k 2 , k= (k 1 -k 2 ) /2 , 

M=mi+m 2 , m=(mi—m2)/2, 

we have 

(kik212N— 11 mim2) = «5KM (k | QN— 11 m) M , (36) 

where the matrix element on the right-hand side de- volume over the Fermi sea. 

(35) 

j dmi I dm2 I dx\Xm
N\2 / I dmi I dm 

24 rkF [3m \/m\z\ 
— / dmmHl h- ( — ] 
kF*J0 I 2kF 2\kF/ ) 

/ 

2 kf 

X [dr\Xn
Nl* 

i.e., we shall use an average value of the correlation 

pends on M. However, this dependence is weak and we 
shall use the approximation 

(k |^- l |m)M^(k |OAr- l |m)M=o 
= (k |f l i r- l |m). (37) 

Let us now introduce the wave function of the 
relative motion of the two nucleons (with M=0) : 

With the approximation (43), we have, according to 
Eq. (34) 

VBh=-12(1/QV) [dr\X*\z 

(k|¥m*)=(k|Gtf|m), (3S) 

XEmi(mimA|5C|mimA)Em2. (44) 

Since Em2
:=^/4j we get with the help of Eq. (19) 

and denote by Xm
N the difference between ^m^ and the 

plane wave cpm. vBh=-y fdtXN 
(r) F , (45) 

( k | x m * ) = ( k | ^ - l | m ) , 

or, in configuration space, 

Xm
N(r) = Vm

N(r)-~eimr. 

(39) 

(40) 

i.e., we get the result that the hole rearrangement energy 
is simply proportional to the single-particle model 
potential V, and the whole problem of calculating VBH 
is thus reduced to calculating the (averaged) correlation 

Now, the summation over ki and k2 in Eq. (34) can be volume. 
transformed into an integration in configuration space21: Actually, in calculating the correlation volume, it is 

20 The method of calculating VRH presented in this section has 22 Right at the Fermi surface {m~kp), the solution of the Bethe-
been applied first in Ref. 16. Goldstone equation "blows up" and the correlation volume be-

21 Notice our normalization: (r | m) = 0 ^ exppmr], where Qy is comes infinite. This, however, has no serious effect on VRK since the 
the volume of the periodicity box. states around m — kp have a negligible weight. 
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convenient to use the relation 

/ 
J r | x m ^ ( r ) | 2 = ( l / 2 1 r ) 3 / ^ k | x m

) V ( k ) | 2 , (46) 

where xm
N(k) is the Fourier transform of Xm

N(r). 

1 1 r 
—XmAr(k) = — dre-ik'Xm»(t)=(k\QN-l\m). (47) 
12y ily J 

By writing Eq. (33) in the relative coordinates and 
applying the effective-mass approximation to the single-
particle energies e, we find 

MN* r 
Cm"(k) = / dre-ikrvNNym

N(t)/(m2-~k2). (48) 

In applying Eq. (48) we shall approximate SPm
N by 

the wave function for the pure hard-core interaction 
VNC, acting in S state only. [The last approximation 
neglects the Z>-state interaction, since our V^N9 Eq. (9), 
acts in even / states only J This means we put 

V W S ^ B G M , (49) 

where ^ B G is the Bethe-Goldstone wave function intro­
duced in Sec. IIA. Notice that ^ B G depends only on the 
hard-core radius and hence is the same in the nucleon-
nucleon as in the A-nucleon case. The only difference 
between the two cases consists in replacing Eq. (25) by 

rvNC(r)*in(m,r)^(h2/MN*)A (m)d(r-c). (50) 

With the help of Eq. (50) we finally get 

47Tf MN* 
XmN(k)^—\ A (m) sinfcH 

k I h2 

X / drr sinkrvNA(r)tyBG(ni,r)\ / (m2—k2). (51) 

Let us notice that, similar to Eq. (43), we can intro­
duce an average value of | Xm

N(k) \2 over the Fermi sea. 

24 rkF [ 3/m\ 
\x*(k)\2 = — / dmm2\\—( — 

\/m\z\ 
(52) 

and combine Eqs. (43) and (46) to 

fdx\x*(r)\2=: (1/2*)* fdk\xN(k)\2. (53) 

IV. CALCULATION OF VRp 

The main problem here is to determine the off-energy-
shell A-nucleon reaction matrix 3Ci. In the first part of 

3"M p t4k2 » Q~^"T P W k 2 + m ^ C 3 f ^ 

FIG. 2. Diagramatic representation of the equation for Xi. 

this section, we shall calculate Xi in an approximate way 
applied in the pure nuclear case by Bethe and his 
collaborators.19 

The matrix element (kimA 13Ci | kimA) entered into 
Eq. (32) as the contribution of A-nucleon interaction to 
the single-particle energy of a nucleon in an excited 
virtual state of momentum ki. This matrix element 
contains the sum of all the corresponding ladder dia­
grams and the appropriate equation for (kiniA 13Ci | kimA) 
is shown diagrammatically in Fig. 2. This diagrammatic 
equation takes the following analytical form: 

3Ci|kimA) 

= n | k i m A ) + E k i ' EkA^AAr|ki'kA) 

1 
X-

e(kx)+e(mA) — e(ki) — e(kA) — A(kik2'Jmim2) 

X(ki /kA |5Ci|k1mA), (54) 
where 

A(kik2; miM2)=:=e(k1)+e(k2)--e(m1)~e(m2) y (55) 

with e and e denoting the single-particle energies of 
nucleons and A particle, respectively. The energy de­
nominator in Eq. (54) is equal to the negative excitation 
energy of the system in the intermediate state indicated 
in Fig. 2 by the dotted line. 

The sum over k / in Eq. (54) is restricted by the 
exclusion principle to ki>kp. However, the range of k\ 
is ki>kF and within this range the exclusion principle is 
less effective compared to the off-energy-shell effect 
represented by A. Hence, we shall ignore the exclusion 
principle in Eq. (35), i.e., we shall consider the k / sum 
to be extended over the whole momentum space. 

With the help of the wave-function operator Qi 
defined by 

3CI=WJVAGI, (56) 

we can rewrite Eq. (54) in the form 

(VkAlGi- l lk imA) 
= (k /k A | ^AOi |k im A ) / 

[.e(k1)+e(mA) — e(ki)~e(kA) — A(&i&2,WiW2)]. (57) 

For the single-particle energies we shall apply the 
effective-mass approximation 

e(k)^(h2/2MA*)k2+ const, 

e(k)Q*(h2/2MN*)k2+const. 
(58) 

With the Pauli principle being ignored and with the 
approximation (58), the center-of-mass motion can be 
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separated. Let us introduce the center-of-mass and With the help of Eq. (67) one can easily derive (see 
relative momenta Ref. 19 for a detailed derivation) the relation 

K=ki+iH'A., . -«> 

K ^ k x ' + k A , / drr2jL(kr)vANRL 

k=O**/Af^*)k1-0u*/^A*)mA , ( 5 9 ) ° 

k ' = (J^/MN*)^'- 0**/^A*)kA. = I (tf+y2) f drr2jL(kr)2 

Actually, we have m A = 0 and 2fj*[ Jo 

k= M *k 1 / J f ,* . (60) +c>h{kc)(-RAUf drrmL^RL> (73) 

For the energy denominator in Eq. (57) we get ™r IJ J c 

e(k1)+e(mA)--e(k1
,)~e(kA)= {h2/2ix*){k2-k'2), (61) w h e r e t h e f u n c t ion RL°, 

A(k1k2Jm1m2) jL(kc) 

= ( i P / l f ^ C W + m ^ - m J k x - m * J . (62) * L ° ( f ) = ' L ( ^ ) " ] ^ ^ * L W ( ^ ) ' ( ? 4 ) 

In the last equation we have used the momentum 
conservation is the RL function for a pure hard-core interaction. 

k 2 = m 1 + m 2 — k i . (63) As *s shown in Ref. 19, after inserting (73) into Eq. 
(70), one can perform most of the summations over L 

We shall approximate A by its angle average. exactly with the result 

AMwmmhkWMv*. (64) JCx(*) = ̂ (JiW+flCxWattn^tive, (75) 

Let us now introduce the wave function ^ ^ 

(k1'kA|fii|k1mA) = 5K'K(^' l^ik) (65) / s , , , , , 

and 3Ci(£)core^M£y2M*){K£2+7V 

X i l k = * i l k - * k , (66) + c [ 1 + 7 C + i ( f e ) 2 / ( 1 + 7 c ) ] } t ( 7 6 ) 

where <pk is a plane wave. If we transform Eq. (57) £or 
(54)1 into configuration space and take into account • „A / , \ A v^ /or i w f J 20 n r> M^\ 
Eqs (60), (61), (64), we finally get X ^ W t ^ ^ Z ^ L + l ) ^ d^Rjfv^lU. (77) 

(^/2M*)(V2-T2)X1,k(r) = . A ^ l i k ( r ) , (67) 
The modified Born approximation which we want to 

where r is the relative A-nucleon coordinate and apply consists in replacing RL in Eq. (75) by RL°. That 
7 2 = (2 (MN*/MA*)+ 1)&2 • (68) m e a n s w e s n a u < u s e t n e approximation 

The matrix element of 3Ci is according to Eq. (56) r00 

g i v e n b y ^ v , 3Ci(&)attractive== 4 x E i ( 2 ^ + l ) drr*RL°VANRL<>. (78) 
(k1mA|3Ci|k1mA)=3C1(^)/fir (69) -^ 

with 
Equations (75), (76), (78) determine our approxima-

3Cx(Jfe) = J dre-ikrvAN(r)Vhk(r). (70) t i o n t o ^ i ; W i t h t h e h e l P o f E ( l - (6 0) w e ^ ^ t y S e t ̂ i 
7 ' as a function of k±. 

Hence, to calculate the off-energy-shell reaction 3Ci(£) = 3Ci(/**£i/Mtf*). (79) 
matrix 3Ci which enters into Eq. (32) for VRP, we have 
to solve Eq. (67) for ¥ 1 | k and then calculate the integral T o calculate VRp given by Eq. (32), we proceed in the 
in E Q (70) same way as in Sec. I I I . With the help of the ap-

Instead of solving Eq. (67) exactly we shall apply the proximation (37), we thus get 
modified Born approximation discussed by Bethe et a/.19 _ / 1 o / 0 s \v v v V a I ~ N(\r\\i 

First we decompose * i , k into partial waves VRP~ \u/ilv ^ m * 2-m, 2-kX 2-ka 6 K ,M|X m WI 

*i,*(*) = i:L(2L+l)iLRL(r)PL(kf). (71) XKi(n*h/MN*) 

This gives us a corresponding decomposition of 3Ci, I / m i + m 2 \ |2 

= (12/Q7»)E»iE»,Ek1xm^(ki ) 
I \ 2 /I 

/•OO 

Xi(k) = 4*-£L(2L+1) drr>jL(kr)vANRL. (72) 
Jo XXi(M*ki/Mir*). (80) 



B I N D I N G E N E R G Y O F A P A R T I C L E I N N U C L E A R M A T T E R B 1 6 9 

Because of the Fourier transform % of the function x, 
most of the contribution to VRP comes from &i>1.5&^ 
where we can neglect (m1+m2)/2 compared to kx. 
Hence we put in Eq. (80) 

X m " ( k i -
mi+m2 \ 

—j—J^x»*(k,), 
and get 

VRp = (12/Q^)T,ic1{Lm1 E m 2 | Xj^frl) | 2 } 

XJCIO***I/^^*)- (si) 

As in Sec. I l l , we shall use the approximate equation 
(51) for XmN(ki) = XmN(ki)> Now the summation over 
mi and m2 produces the average Ix^C^i)!2 defined in 
Eq. (52). 

(12/12F
2)Lmi Em2|Xm^(*i) | 2 = ! P 2 | . X * ( * I ) I2, (82) 

and hence for VRP we get finally 

VBp=lJ—W fdhh'l^ikdl^ii^h/M^). S3) 

V. ESTIMATE OF MA* 

We shall present here a simplified estimate of the 
effective mass of the A particle for high-energy excita­
tions where the hard core in the A-nucleon interaction 
plays the predominant role. Our estimate differs from 
that of Bethe et al.19 only as far as we have in our case 
two different particles, hence, a different reduced mass 
appears, and there is no exchange contribution (which 
anyhow has been neglected in Ref. 19), One also has to 
distinguish in our case between the nucleon-nucleon and 
A-nucleon reaction matrices. 

The A-nucleon contribution to the energy E(A + 1A) 
of the nuclear matter +A-particle system is in the 
reaction-matrix theory given by the diagram (a) in 
Fig. 3. By defining the single-particle energy of a A 
particle which enters into the reaction-matrix equation 
by the equation 

¥kA2 

e(kA) = —+4 Em^(mVkA|3Ci|mj/kA), (84) 
2MA <hF 

one automatically includes into the diagram (a) in 
Fig. 3 the A-particle self-energy diagrams of the type 
shown in Fig. 3(b). The off-energy-shell reaction matrix 
5Ci has been discussed in Sec. IV. The only difference is 
that now we are interested in the diagonal matrix 
element in the state in which the nucleon wave vector 
ntN<kF and the A-particle wave vector &A>0. In the 
following discussion we shall restrict ourselves to big 
values of &A and accordingly we shall neglect the 
exclusion principle in the equation for 3Ci as was also 
done in Sec. IV. 

One can now repeat the whole procedure of deter­
mining 5Ci of Sec. IV taking, however, into account the 

FIG. 3. Diagramatic representa­
tion of the A-nucleon contribution 
to E{A+IA): (a) first-order dia­
gram, (b) A self-energy diagram of 
third order. 

OK) 
(b) 

different values of the nucleon and A-particle momenta. 
Instead of Eq. (55) the off-energy-shell shift A is now 
given by 

A(kAkN; mAmN)=e(kA)+e(kN)~e(mA)~e(mN). (85) 

By applying the momentum conservation 

kiVr=mA+mAr-kA=miNr-kA, (86) 

(mA=0) and the effective-mass approximation, Eq. 
(58), we get 

A= (^2/2/i*)^A
2-2(^V2Miv*)m^kA^(^2/2M*)^A

2, (87) 

where in the last step we have replaced A by its angle 
average. 

Let us introduce the relative A-nucleon momentum 

p= / i* [m^ / i f ^* -VJ fA*] . (88) 

For big values of kA (kA^>kF) we have 

kA
2^(MA*/»*)2p2, (89) 

and we can write Eq. (87) in the form 

h2 

A^—(MN*/»*)p2. (90) 
2M* 

Instead of Eqs. (69), (70) of Sec/lV^we introduce 

(m^'kAlJCilmj/kA) 

= (1/OF) / dre~^VAN(r)^i,v(r), (91) 

and instead of Eq. (67) we now have 

(h2/2^)(V2~-yp
2)(^hp~e^)==vA^i,P, (92) 

where 
yp

2= (2+MA*/MN*)(MA*/MN*)P2. (93) 

For big values of p (or kA) we can approximate VAN in 
Eq. (92) by its repulsive core part vAC. Considering that 

*>AC¥I,P = 0- for r>c, ^ i ,p = 0 for r<c, (94) 

we get from Eq. (92) 

VAc^i,P=(h2/2^)(p2+7p
2)e^. (95) 

By inserting (95) into Eq. (91), we get 

( m j / k A | & i | m j / k A ) 
S (1/Qv) (h2/2»*) (f+yP

2) (47T/3V. (96) 

Hence, according to Eq. (58) we have for big values of kA, 

e(^A)^(^AV2ifiv)+p(^/2M*)^2+7p2)(47r/3 ),3 ! . (97) 
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A comparison with Eq. (58) gives finally 

{c/r,)\l+MA*/MN*)+MA*/MA^l. (98) 

In obtaining Eq. (98) we have used Eq. (89), the 
definition of yp, Eq. (93), and the relation between TQ 
and p given in Eq. (4). 

With the numerical values of r0} c, MN* introduced in 
Sec. I, Eq. (98) gives 

I f A * / ^ A = 0.887. (99) 

VI. NUMERICAL RESULTS AND DISCUSSION 

All the numerical computations have been performed 
on the CDC-1604 computer of the Computer Center of 
the University of California at San Diego. 

Numerical values of all the quantities (MN*,P,VNN,VAN) 
used in the computations are those described in Sec. I. 

In our numerical calculations we have considered two 
cases: MA*=MA and ikfA*=0.8871fA. 

The values of V in Table I in the case MA*— MA have 
been taken from II . Within the approximations of Sec. 
IIA, only the repulsive core [yAC part of Eq. (21)] 
contribution to V depends on the value of I f A*.23 Hence, 
to get V in the case MA*=0.887ikfA, we only have to 
calculate the vAc contribution to V. This has been done 
for the S state according to Eqs. (21), (23), (25). The 
higher / contributions calculated with the help of the 
approximate expressions given in I are practically the 
same for both the values of MA*, and are very small 
compared to the S-state contribution. Hence, the whole 
difference between V in the case MA*=MA and M A * 
= 0.887ilfA consists in an increased 5-state contribution 
of vAc in the latter case. 

The calculation of VRK has been reduced in Sec. I l l 
to the calculation of the correlation volume. This has 
been done by first calculating Xm

N(k) according to 
Eq. (51). Then the average | xN(&) 12 n a s been calculated 
according to Eq. (52). And finally Eq. (53) has been 
used to calculate the correlation volume with the result 

/ • 

dr\xN(r)\2=1.16, (100) 

which, multiplied by the factor fp, Eq. (45), gives 0.15. 
This means that VRK is 15% of — F. A comparison of 
Eqs. (100) and (42) shows that the correction to the 
Bethe-Goldstone wave function due to the attractive 
part of VNN, VNA in Eq. (51), has little effect on the 
magnitude of the correlation volume. 

The particle rearrangement term VRP has been calcu­
lated according to Eq. (83). The average \xN(ki)I2 has 
been computed as in the case of VRU. The 3Ci matrix has 
been computed according to Eqs. (76), (77). The 
contribution of the attractive part of Xi depends on 
MA* only very weakly through the relation (79). We 

TABLE I. Numerical results in MeV. The VAN potential denoted 
by (a)-(c) corresponds to the values of b, VQ given in Eqs. (8a)-
(8c), respectively. 

MA/MA* 

1 

0.887 

VAN 

(a) 
0>) 
(c) 

(a) 
(b) 
(c) 

V 

-41.3 
-40.3 
-40 .1 

-38.2 
-37.2 
-37.0 

vRh 
6.2 
6.0 
6.0 

5.7 
5.5 
5.5 

VBP 

0.7 
0.6 
0.7 

1.2 
1.0 
1.1 

VB U=-BA(«>) 

6.9 
6.6 
6.7 

6.9 
6.5 
6.6 

34.4 
33.7 
33.4 

31.3 
30.7 
30.4 

have included partial waves with L<4 in calculating 
3ClWattractive» 

As an example, we give the different contributions to 
VRP in the case of the vAN potential of Eq. (86) for 
MA*=MA. The contributions of JCi(A)attractive to VRp 

for different values of L, Eq. (77), are in this case 

[ l ^ J a 

r—2.6' 
- 5 . 3 
- 2 . 9 
- 1 . 1 
- 0 . 4 

MeV for Z,= 

0 
1 
2. (101) 
3 
4 

The contribution of 3Ci(&)COre to VRP is in the same case 

C o l o r e - 1 2 . 9 MeV, (102) 

and the total VRP is 

F a P = 0 . 6 M e V . (103) 

23 The VAA contribution to V does not depend on MA* at all if 
one uses the approximate form of ^ k given in Eq. (9) of II . 

The situation in other cases is very much the same. 
To a high degree the repulsive and attractive contribu­
tions cancel each other. The net effect is a very small 
positive value of VRP. This is the result of the hard core 
being much more effective in the case of VRP than in the 
case of VRU. Namely, in the case of VRP the A-nucleon 
interaction occurs at high energy (nucleon in an excited 
state) and off the energy shell, whereas in the case of 
VRK the A-nucleon interaction occurs at low energy 
(nucleon in a state below the Fermi level) and on the 
energy shell. 

The results of our numerical computations are shown 
in Table I. The most important correction to V is the 
rearrangement energy VR, strictly speaking its hole 
rearrangement part VRK- The rearrangement energy, 
VR, is not sensitive to the value of MA*. However, V is 
reduced appreciably if MA is replaced by MA*^= 0.887M A. 

The results show that by including VR into the 
calculation of BA(so) and by using a reasonably esti­
mated value of MA*<MA one gets a very good agree­
ment with the experimentally estimated value of BA( <*>). 
This agreement has been obtained with the A-nucleon 
potential which, used in I I , gave the best fit to the 
A-nucleon scattering data. 

In view of the approximations applied in the present 
paper the accuracy of our results certainly does not 
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exceed a few MeV. Also the calculation of V in I and I I 
is approximate. In particular, the main contribution to 
V from the attractive part of VAN, namely that in the P 
state, has been calculated in an approximation of 
uncertain accuracy. 

Still our results show—at least qualitatively—that 
there is no serious discrepancy between the calculated 

I. INTRODUCTION 

IN the scattering of electrons by a nucleus, the emis­
sion of photons depends on the nuclear magnetic 

moment as well as on the nuclear charge. Sarkar1 has 
obtained the bremsstrahlung cross section correspond­
ing to a spin-independent (i.e., classical) nuclear mag­
netic moment. I t is the purpose of this paper to deter­
mine the effects of nuclear spin on the cross section, to 
obtain the angular and energy distributions of the 
radiated particles, and to show that, as in the Coulomb 
case, the infrared divergence is spurious. 

The results presented parallel those of Bethe and 
Heitler,2 and of Gluckstern, Hull, and Breit3 for 
bremsstrahlung in the Coulomb field. 

An electromagnetic potential is introduced to repre­
sent the nucleus 

-4,(r) = ( - v x v l f o Z ) f - 1 , (1.1) 

where /x and Z are the nuclear magnetic moment and 
atomic number. The relative magnitude of the magnetic 
and Coulomb interactions with the electron is con­
sidered by Newton,4 the ratio being 

»\q\/eZ=(\<l\»/»N)/2McZ, (1.2) 

* Based on a thesis presented in partial fulfillment of the require­
ments for the degree of Doctor of Philosophy at Indiana Univer­
sity, 1963. 
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t Present address: School of Physics, University of Minnesota, 
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1 S. Sarkar, Nuovo Cimento 15, 686 (1960). 
2 H. A. Bethe and W. Heitler, Proc. Roy. Soc. (London) A146, 

83 (1934). 
3 R. L. Gluckstern, M. H. Hull, and G. Breit, Phys. Rev. 90, 

1026 (1953). 
4 R. G. Newton, Phys. Rev. 103, 385 (1956); 109, 2213 (1958); 

and 110, 1483 (1958). 

and measured binding energy of a A-particle in heavy 
hypernuclei. 
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where M is the mass of the nucleon, IXN the nuclear 
magneton, and q a momentum transfer characteristic 
of the scattering process. Evidently, magnetic scatter-

\ ing is of greatest importance for high-energy electrons, 
the effect decreasing with Z. Unless the momentum 
transfer is comparable with the nuclear mass, the exist­
ence of magnetic properties of the nucleus is almost 

1 completely masked by the nuclear charge. 
The assumption that the nucleus does not recoil is 

admittedly unrealistic for very light nuclei, since it is 
necessary that the experiments be performed at high 

; energies. The most serious violation of this approxima­
tion, scattering from the proton, has been considered by 
Berg and Lindner.5 

I t is interesting to note that polarized targets, 
suitable for scattering experiments, are currently under 
investigation.6 

L 

' II. THE DIFFERENTIAL CROSS SECTION 

The electromagnetic potential is treated in the first 
Born approximation. If (po,iZ£o) denotes the four-

1 momentum of the incident electron, (p,iE) that of the 
electron after scattering, then the cross section for 
emission of a photon with momentum k and polariza­
tion direction £, is1 

da= (Z2e«/87r2Xkdk/q*)(p/p0) Tr(.4++J3+) 

> ________ X(H+E)(A+B)(Ho+EojdQdQk, (2.1) 

5 R. A. Berg and C. N. Lindner, Phys. Rev. 112, 2072 (1958). 
; 6 O. Chamberlain, C. D. Jeffries, C. Schultz, and G. Shapiro, 

Bull. Am. Phys. Soc. 8, 38 (1963). 
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The cross section for electron bremsstrahlung in the presence of a magnetic dipole potential is considered, 
with dependence on photon polarization explicit. Modifications of a result due to Sarkar, to include nuclear 
spin effects, are derived, and the angular and energy distributions of the radiated quanta are obtained. The 
related process of pair production is discussed. The infrared divergence is eliminated in the same way as for 
the Coulomb potential. 


